skip to main content


Search for: All records

Creators/Authors contains: "Tweedie, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 12, 2024
  2. Gallium nitride (GaN) high electron mobility transistors (HEMTs) are key components enabling today’s wireless communication systems. However, overheating concerns hinder today’s commercial GaN HEMTs from reaching their full potential. Therefore, it is necessary to characterize the respective thermally resistive components that comprise the device’s thermal resistance and determine their contributions to the channel temperature rise. In this work, the thermal conductivity of the GaN channel/buffer layer and the effective thermal boundary resistance (TBR) of the GaN/substrate interface of a GaN-on-SiC wafer were measured using a frequency-domain thermoreflectance technique. The results were validated by both experiments and modeling of a transmission line measurement (TLM) structure fabricated on the GaN-on-SiC wafer. The limiting GaN/substrate thermal boundary conductance (TBC) beyond which there is no influence on the device temperature rise was then quantified for different device configurations. It was determined that this limiting TBC is a function of the substrate material, the direction in which heat primarily flows, and the channel temperature. The outcomes of this work provide device engineers with guidance in the design of epitaxial GaN wafers that will help minimize the device’s thermal resistance. 
    more » « less
    Free, publicly-accessible full text available August 24, 2024
  3. Gallium nitride (GaN) high electron mobility transistors (HEMTs) are key components of modern radio frequency (RF) power amplifiers. However, device self-heating negatively impacts both the performance and reliability of GaN HEMTs. Accordingly, laser-based pump-probe methods have been used to characterize the thermal resistance network of epitaxial material stacks that are used to fabricate HEMT structures. However, validation studies of these measurement results at the device level are lacking. In the present work, a GaN-on-SiC wafer was characterized using frequency-domain thermoreflectance and steady-state thermoreflectance techniques. The thermal conductivity of the GaN channel/buffer layer, SiC substrate, and the interfacial thermal boundary resistance at the GaN/SiC interface were determined. Results were validated by performing thermal imaging and modeling of a transmission line measurement (TLM) structure fabricated on the GaN-on-SiC wafer. 
    more » « less
    Free, publicly-accessible full text available May 30, 2024
  4. Highly conductive Ge-doped AlN with conductivity of 0.3 (Ω cm)−1 and electron concentration of 2 × 1018 cm−3 was realized via a non-equilibrium process comprising ion implantation and annealing at a moderate thermal budget. Similar to a previously demonstrated shallow donor state in Si-implanted AlN, Ge implantation also showed a shallow donor behavior in AlN with an ionization energy ∼80 meV. Ge showed a 3× higher conductivity than its Si counterpart for a similar doping level. Photoluminescence spectroscopy indicated that higher conductivity for Ge-doped AlN was achieved primarily due to lower compensation. This is the highest n-type conductivity reported for AlN doped with Ge to date and demonstration of technologically useful conductivity in Ge-doped AlN.

     
    more » « less
  5. Abstract

    We investigate the electrical characteristics of Ni Schottky contacts on n-type GaN films that have undergone ultra-high-pressure annealing (UHPA), a key processing step for activating implanted Mg. Contacts deposited on these films exhibit low rectification and high leakage current compared to contacts on as-grown films. By employing an optimized surface treatment to restore the GaN surface following UHPA, we obtain Schottky contacts with a high rectification ratio of ∼109, a near-unity ideality factor of 1.03, and a barrier height of ∼0.9 eV. These characteristics enable the development of GaN junction barrier Schottky diodes employing Mg implantation and UHPA.

     
    more » « less
  6. We report on the absence of strain relaxation mechanism in Al 0.6 Ga 0.4 N epilayers grown on (0001) AlN substrates for thickness as large as 3.5  μm, three-orders of magnitude beyond the Matthews–Blakeslee critical thickness for the formation of misfit dislocations (MDs). A steady-state compressive stress of 3–4 GPa was observed throughout the AlGaN growth leading to a large lattice bow (a radius of curvature of 0.5 m −1 ) for the thickest sample. Despite the large lattice mismatch-induced strain energy, the epilayers exhibited a smooth and crack-free surface morphology. These results point to the presence of a large barrier for nucleation of MDs in Al-rich AlGaN epilayers. Compositionally graded AlGaN layers were investigated as potential strain relief layers by the intentional introduction of MDs. While the graded layers abetted MD formation, the inadequate length of these MDs correlated with insignificant strain relaxation. This study emphasizes the importance of developing strain management strategies for the implementation of the single-crystal AlN substrate platform for III-nitride deep-UV optoelectronics and power electronics. 
    more » « less
  7. High room temperature n-type mobility, exceeding 300 cm2/Vs, was demonstrated in Si-doped AlN. Dislocations and CN−1 were identified as the main compensators for AlN grown on sapphire and AlN single crystalline substrates, respectively, limiting the lower doping limit and mobility. Once the dislocation density was reduced by the growth on AlN wafers, C-related compensation could be reduced by controlling the process supersaturation and Fermi level during growth. While the growth on sapphire substrates supported only high doping ([Si] > 5 × 1018 cm−3) and low mobility (∼20 cm2/Vs), growth on AlN with proper compensation management enabled controlled doping at two orders of magnitude lower dopant concentrations. This work is of crucial technological importance because it enables the growth of drift layers for AlN-based power devices.

     
    more » « less
  8. Abstract We report a kV class, low ON-resistance, vertical GaN junction barrier Schottky (JBS) diode with selective-area p-regions formed via Mg implantation followed by high-temperature, ultra-high pressure (UHP) post-implantation activation anneal. The JBS has an ideality factor of 1.03, a turn-on voltage of 0.75 V, and a specific differential ON-resistance of 0.6 mΩ·cm 2 . The breakdown voltage of the JBS diode is 915 V, corresponding to a maximum electric field of 3.3 MV cm −1 . These results underline that high-performance GaN JBS can be realized using Mg implantation and high-temperature UHP post-activation anneal. 
    more » « less
  9. Abstract We demonstrate controlled Si doping in the low doping range of 5 × 10 15 –2.5 × 10 16 cm −3 with mobility >1000 cm 2  V −1 s −1 in GaN films grown by metalorganic chemical vapor deposition. The carbon-related compensation and mobility collapse were prevented by controlling the electrochemical potential near the growth surface via chemical potential control (CPC) and defect quasi-Fermi level (dQFL) point-defect management techniques. While the CPC was targeted to reduce the net C N concentration, the dQFL control was used to reduce the fraction of C atoms with the compensating configuration, i.e. C N − 1 . The low compensating acceptor concentration was confirmed via temperature-dependent Hall effect analysis and capacitance–voltage measurements. 
    more » « less